Scintillation Crystal Growth Quality Evaluation Based On Machine Learning
نویسندگان
چکیده
The scintillator crystal is a crystalline material that can light under the influence of high-energy rays and be widely used for detecting particles. With development industrial CT other fields, demand inorganic crystals with high melting points performance increasing yearly, which results in abandonment traditional laboratory mode manufacturing crystals. For achieving needs high-standard crystals, market attaches great importance to intelligent One critical technical difficulties numerical assessment quality. research relies on manually measuring quality, has many defects, such as inability numerical, quality evaluation varies from person person. Therefore, this paper proposes methodology assessing based residual depth network. At same time, order make more refined, uses target detection method learning determine area. model article developed yolov5 deep framework, suitable detection, its accuracy 98%. network proposed by ResNet-18, grading, reaches 84.8%. scintillation solution problem representation opens up channel closed-loop control processes.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملInpainted image quality assessment based on machine learning
In many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely ...
متن کاملComparative evaluation of machine learning-based malware detection on Android
The Android platform is known as the market leader for mobile devices, but it also has gained much attention among malware authors in recent years. The widespread of malware, a consequence of its popularity and the design features of the Android ecosystem, constitutes a major security threat currently targeted by the research community. Among all counter methods proposed in previous publication...
متن کاملImage-based crystal detection: a machine-learning approach
The ability of computers to learn from and annotate large databases of crystallization-trial images provides not only the ability to reduce the workload of crystallization studies, but also an opportunity to annotate crystallization trials as part of a framework for improving screening methods. Here, a system is presented that scores sets of images based on the likelihood of containing crystall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3303928